
 1

Verification of a Byzantine-Fault-Tolerant Self-Stabilizing

Protocol for Clock Synchronization
Mahyar R. Malekpour

NASA Langley Research Center, Hampton, Virginia, USA

(757) 864 - 1513
Mahyar.R.Malekpour@nasa.gov

Abstract—This paper presents the mechanical verification of

a simplified model of a rapid Byzantine-fault-tolerant self-

stabilizing protocol for distributed clock synchronization

systems. This protocol does not rely on any assumptions

about the initial state of the system except for the presence

of sufficient good nodes, thus making the weakest possible

assumptions and producing the strongest results. This

protocol tolerates bursts of transient failures, and

deterministically converges within a time bound that is a

linear function of the self-stabilization period. A simplified

model of the protocol is verified using the Symbolic Model

Verifier (SMV) [1]. The system under study consists of 4

nodes, where at most one of the nodes is assumed to be

Byzantine faulty. The model checking effort is focused on

verifying correctness of the simplified model of the protocol

in the presence of a permanent Byzantine fault as well as

confirmation of claims of determinism and linear

convergence with respect to the self-stabilization period.

Although model checking results of the simplified model of

the protocol confirm the theoretical predictions, these results

do not necessarily confirm that the protocol solves the

general case of this problem. Modeling challenges of the

protocol and the system are addressed. A number of

abstractions are utilized in order to reduce the state space.
1

2

TABLE OF CONTENTS

1. INTRODUCTION.. 1
2. THE PROTOCOL... 2
3. MECHANICAL VERIFICATION... 5
4. MODELING SIMPLIFICATIONS AND ABSTRACTIONS 5
5. MODELING THE SYSTEM... 6
6. MODELS AND DATA STRUCTURES 7
7. PROPOSITIONS .. 9
8. RESULTS .. 10
9. APPLICATIONS... 12
10. SUMMARY AND FUTURE WORK 12
REFERENCES ... 13
BIOGRAPHY ... 13

1
1 “U.S. Government work not protected by U.S. copyright.”
2 IEEEAC paper #1628, Version 2, Updated 2007:10:17

1. INTRODUCTION

The concept of self-stabilizing distributed computation was

first presented in a classic paper by Dijkstra [2]. In that

paper, he speculated whether it would be possible for a set

of machines to stabilize their collective behavior in spite of

unknown initial conditions and distributed control. A

fundamental criterion in the design of a robust distributed

system is to provide the capability of tolerating and

potentially recovering from failures that are not predictable

in advance. Overcoming such failures is most suitably

addressed by tolerating Byzantine faults [3]. There are

many algorithms that address permanent faults [4], where

the issue of transient failures is either ignored or

inadequately addressed. There are many efficient Byzantine

clock synchronization algorithms that are based on

assumptions on initial synchrony of the nodes [4, 5] or

existence of a common pulse at the nodes, e.g. the first

protocol in [6]. There are many clock synchronization

algorithms that are based on randomization and, therefore,

are non-deterministic, e.g. the second protocol in [6].

Solving these special cases is insufficient to claim that an

algorithm is self-stabilizing. The main challenges associated

with self-stabilization are the complexity of the design and

the proof of correctness of the protocol. Another difficulty

is achieving an efficient convergence time for the proposed

self-stabilizing protocol. Typically, verification of a

protocol is conducted by the composition of a paper-and-

pencil proof. Verification of such proofs is another

challenge associated with self-stabilization, especially as the

complexity of the protocol increases. Such proofs are error

prone. One recent work in this area is the algorithm

developed by Daliot et al [7] called the Byzantine self-

stabilization pulse synchronization (BSS-Pulse-Synch)

protocol. A flaw in BSS-Pulse-Synch protocol was found

and documented in a report by Malekpour et al. [8]. Such

flaws are harder to pinpoint in the proof argument than

finding a counterexample via simulation or model checking.

Another technique sometimes used to verify the correctness

of a design is based on extensive simulation but it too can

miss significant errors when the number of possible states is

very large. Simulation of specific scenarios requires proper

set up of the system for each case. As the number of cases

to be examined increases, this process becomes impractical.

 2

Model checking is a method for mechanically verifying

finite-state concurrent systems. Specifications about the

system are expressed as temporal logic formulas, and

efficient symbolic algorithms are used to traverse the model

defined by the system and check if the specification holds or

not. The verification procedure is an exhaustive search of

the state space of the design. As a result, model checking is

a viable means for mechanically verifying the claims of a

distributed clock synchronization protocol. Model checking

also provides insight into the behavior of the system even if

it cannot fully explore the entire state space. Therefore,

model checking is a practical alternative for accessing

correctness of a protocol and proving correctness of a

protocol instance.

This paper presents model checking efforts in support of the

claims of a rapid Byzantine-fault-tolerant self-stabilizing

protocol for distributed clock synchronization systems [9,

10]. In particular, this effort encompasses the verification of

correctness of a simplified model of the protocol by

confirming that a candidate system self-stabilizes from any

state and tolerates bursts of transient failures in the presence

of permanent Byzantine faulty nodes. A permanent

Byzantine faulty node is a node with arbitrarily malicious

behavior. This effort, furthermore, includes the verification

of claims of determinism and linear convergence of the

simplified model of the protocol with respect to the self-

stabilization period and in the presence of permanent

Byzantine faulty nodes. Although model checking results of

the simplified model of the protocol are promising, these

results do not necessarily imply that the protocol solves the

general case of this problem.

N2

N3N4

N1

Figure 1. A 4-node system.

As shown in Figure 1, the system under study consists of 4

nodes, where 3 of the nodes are assumed to be good and one

of the nodes is Byzantine faulty. Toward this objective, a

number of abstractions and reduction techniques are devised

to reduce the state space. Also, in order to further reduce

the state space to a more manageable size, system

parameters are reduced to their minimal values. The amount

of memory needed for the construction of the Binary

Decision Diagram (BDD) readily reaches the 4GB available

after construction of the state space. Therefore, model

checking of larger and more complex systems poses a

greater challenge.

2. THE PROTOCOL

A distributed system is defined to be self-stabilizing if, from

an arbitrary state and in the presence of bounded number of

Byzantine faults, it is guaranteed to reach a legitimate state

in a finite amount of time and remain in a legitimate state as

long as the number of Byzantine faults are within a specific

bound. A legitimate state is a state where all good clocks in

the system are synchronized within a given precision bound.

The self-stabilization problem has two facets. First, it is

inherently event-driven and, second, it is time-driven.

Most attempts at solving the self-stabilization problem have

focused only on the event-driven aspect of this problem.

The protocol presented here properly merges the time and

event driven aspects of this problem in order to self-stabilize

the system in a gradual and yet timely manner. Furthermore,

this protocol is based on the concept of a continual vigilance

of the state of the system in order to maintain and guarantee

its stabilized status, and a periodic reaffirmation of nodes by

declaring their internal status. Finally, initialization and/or

reintegration are not treated as special cases. These

scenarios are regarded as inherent parts of this self-

stabilizing protocol.

The self-stabilization events are captured at a node via a

selection function that is based on received valid messages

from other nodes. When such an event occurs, it is said that

a node has accepted or an accept event has occurred. In

order to achieve self-stabilization, the nodes communicate

by exchanging two self-stabilization messages labeled

Resync and Affirm. The Resync message reflects the time-

driven aspect of this self-stabilization protocol, while the

Affirm message reflects the event-driven aspect of it. The

Resync message is transmitted when a node realizes that the

system is no longer stabilized or as a result of a

resynchronization timeout. The Affirm message is

transmitted periodically and at specific intervals primarily in

response to a legitimate self-stabilization accept event at the

node.

The time difference between interdependent consecutive

events is expressed in terms of the minimum event-response

delay, D, and network imprecision, d. As a result, the

approach presented here is expressed as a self-stabilization

of the system as a function of the expected time separation

between the consecutive Affirm messages, ∆AA. To

guarantee that a message from a good node is received by all

other good nodes before a subsequent message is

transmitted, ∆AA is constrained such that ∆AA ≥ (D + d).

Unless stated otherwise, all time dependent parameters of

this protocol are measured locally and expressed as

functions of ∆AA.

Three fundamental parameters characterize the self-

stabilization protocol presented here, namely K, D, and d.

The number of faulty nodes, F, the number of good nodes,

 3

G, and the remaining parameters that are subsequently

enumerated are derived parameters and are based on these

three fundamental parameters. Furthermore, except for K,

F, G, TA and TR, which are integer numbers, other

parameters are real numbers. In particular, ∆AA is used as a

threshold value for monitoring of proper timing of incoming

and outgoing Affirm messages. The derived parameters TA =

G - 1 and TR = F + 1 are used as thresholds in conjunction

with the Affirm and Resync messages, respectively.

The assessment results of the monitored nodes are utilized

by the node in the self-stabilization process. The node

consists of a state machine and a set of (K-1) monitors. The

state machine has two states, Restore state (T) and

Maintain state (M), that reflect the current state of the node

in the system as shown in Figure 2, where, Resync messages

are represented as R and Affirm messages are represented as

A.
 A

MT

R

R, A A

Figure 2. The node state machine.

2.1. Transitory Conditions

The transitory conditions enable the node to migrate to the

Maintain state and are defined as:

1. The node is in the Restore state,

2. At least 2F accept events in as many ∆AA intervals have

occurred after the node entered the Restore state,

3. No valid Resync messages are received for the last

accept event.

2.2. Message Validity

Starting from the last transmission of the Resync message

consecutive Affirm messages are transmitted at ∆AA intervals,

where ∆AA ≥ (D + d). In [9, 10] ∆RR,min is defined to be

∆RR,min = 2F∆AA + 1 clock ticks. At the receiving nodes, the

following definitions hold:

– A message (Resync or Affirm) from a given source is

valid if it is the first message from that source. A

message shall remain valid for the duration of one ∆AA.

– An Affirm message from a given source is early if it

arrives earlier than (∆AA - d) after previous valid

message (Resync or Affirm) from the same source.

– A Resync message from a given source is early if it

arrives earlier than ∆RR,min after previous valid Resync

message from the same source.

– An Affirm message from a given source is valid if it is

not early.

– A Resync message from a given source is valid if it is

not early.

2.3. System Assumption

1. The cause of transient faults has dissipated.

2. All good nodes actively participate in the self-

stabilization process and correctly execute the

protocol.

3. At most F of the nodes are faulty.

4. The source of a message is distinctly identifiable by

the receivers from other sources of messages.

5. A message sent by a good node will be received

and processed by all other good nodes within ∆AA,

where ∆AA ≥ (D + d).

6. The initial values of the state and all variables of a

node can be set to any arbitrary value within their

corresponding range (In an implementation, it is

expected that some local capabilities exist to

enforce type consistency of all variables.)

2.4. Protocol Functions

Two functions InvalidAffirm() and InvalidResync() are used

by the monitors. The InvalidAffirm() function determines

whether or not a received Affirm message is valid. The

InvalidResync() function determines if a received Resync

message is valid. When either of these functions returns a

true value, it is indicative of an unexpected behavior by the

corresponding source node.

The Accept() function is used by the state machine of the

node in conjunction with the threshold value TA = G - 1.

When at least TA valid messages (Resync or Affirm) have

been received, this function returns a true value indicating

that an accept event has occurred and such an event has also

taken place in at least F other good nodes. When a node

accepts, it consumes all valid messages used in the accept

process by the corresponding function. Consumption of a

message is the process by which a monitor is informed that

its stored message, if it existed and was valid, has been

utilized by the state machine.

The Retry() function determines if at least TR other nodes

have transitioned out of the Maintain state, where TR = F +1.

When at least TR valid Resync messages from as many nodes

have been received, this function returns a true value

indicating that at least one good node has transitioned to the

Restore state. This function is used to transition from the

Maintain state to the Restore state.

The TransitoryConditionsMet() function determines proper

timing of the transition from the Restore state to the

Maintain state. This function keeps track of the accept

events, by incrementing the Accept_Event_Counter, to

determine if at least 2F accept events in as many ∆AA

intervals have occurred. It returns a true value when the

transitory conditions are met.

 4

The TimeOutRestore() function uses PT as a boundary value

and asserts a timeout condition when the value of the

State_Timer has reached PT. Such a timeout triggers the

node to reengage in another round of self-stabilization

process. This function is used when the node is in the

Restore state.

The TimeOutMaintain() function uses PM as a boundary

value and asserts a timeout condition when the value of the

State_Timer has reached PM. Such a timeout triggers the

node to reengage in another round of synchronization. This

function is used when the node is in the Maintain state.

In addition to the above functions, the state machine utilizes

the TimeOutAcceptEvent() function. This function is used to

regulate the transmission time of the next Affirm message.

This function maintains a DeltaAA_Timer by incrementing it

once per local clock tick and once it reaches the

transmission time of the next Affirm message, ∆AA, it returns

a true value. In response to such a timeout, the node

broadcasts an Affirm message.

2.5. The Self-Stabilizing Clock Synchronization Problem

To simplify the presentation of this protocol, it is assumed

that all time references are with respect to a real time t0,

where t0 = 0 when the system assumptions are satisfied, and

for all t > t0 the system operates within the system

assumptions. Let

• C be the bound on the maximum convergence time,

• ∆Local_Timer(t), for real time t, the maximum

difference of values of the local timers of any two

good nodes Ni and Nj, where Ni, Nj ∈ KG, and KG is

the set of all good nodes, and

• ∆Precision, also referred to as self-stabilization

precision, the guaranteed upper bound on the

maximum separation between the local timers of

any two good nodes Ni and Nj in the presence of a

maximum of F faulty nodes, where Ni, Nj ∈ KG.

A good node Ni resets its variable Local_Timeri periodically

but at different points in time than other good nodes. The

difference of local timers of all good nodes at time t,

∆Local_Timer(t), is determined by the following equation while

recognizing the variations in the values of the Local_Timeri

across all good nodes.

∆Local_Timer(t) = min ((Local_Timermax(t) – Local_Timermin(t)),

 (Local_Timermax(t - ∆Precision) –

 Local_Timermin(t - ∆Precision))),
where,

Local_Timermin(x) = min ({Local_Timeri(x) | Ni ∈ KG}),

Local_Timermax(x) = max ({Local_Timeri(x) | Ni ∈ KG}),

and, there exist C and ∆Precision:

Convergence: ∆Local_Timer(C) ≤ ∆Precision

Closure: ∀ t, t ≥ C, ∆Local_Timer(t) ≤ ∆Precision

The values of C, ∆Precision, and the maximum value for

Local_Timeri, Local_Timer_Max, are determined to be:

C = (2PT + PM) ∆AA,

∆Precision = (3F - 1) ∆AA - D + ∆Drift,

Local_Timer_Max = PT + PM,

and the amount of drift from the initial precision is given by

∆Drift = ((1+ρ) - 1/(1+ρ)) PEffective ∆AA.

Note that since Local_Timer_Max > PT /2 and since the

Local_Timer is reset after reaching Local_Timer_Max

(worst case wraparound), a trivial solution is not possible.

2.6. The Byzantine-Fault-Tolerant Self-Stabilizing Protocol

for Distributed Clock Synchronization Systems

The presented protocol is described in Figure 3 and

consists of a state machine and a set of monitors which

execute once every local oscillator tick.

Monitor:

case (incoming message from the corresponding node)

{Resync:

if InvalidResync() then

Invalidate the message

else

Validate and store the message,

Set state status of the source.

Affirm:

if InvalidAffirm() then

Invalidate the message

else

Validate and store the message.

Other:

Do nothing.

} // case

Figure 3.a. The self-stabilization protocol.

 5

Node:

case (state of the node)

{Restore:

if TimeOutRestore() then

Transmit Resync message,

Reset State_Timer,

Reset DeltaAA_Timer,

Reset Accept_Event_Counter,

Stay in Restore state,

elsif TimeOutAcceptEvent() then

Transmit Affirm message,

Reset DeltaAA_Timer,

if Accept() then

Consume valid messages,

Clear state status of the sources,

Increment Accept_Event_Counter,

if TransitoryConditionsMet() then

Reset State_Timer,

Go to Maintain state,

else

Stay in Restore state.

 else

Stay in Restore state.,

else

Stay in Restore state.

Maintain:

if TimeOutMaintain() or Retry() then

Transmit Resync message,

Reset State_Timer,

Reset DeltaAA_Timer,

Reset Accept_Event_Counter,

Go to Restore state,

elsif TimeOutAcceptEvent() then

if Accept() then

Consume valid messages.,

if (State_Timer = ∆Precision)
Reset Local_Timer.,

Transmit Affirm message,

Reset DeltaAA_Timer,

Stay in Maintain state,

else

Stay in Maintain state.

} // case

Figure 3.b. The self-stabilization protocol.

2.7. Semantics of the pseudo-code

• Indentation is used to show a block of sequential

statements.

• ‘,’ is used to separate sequential statements.

• ‘.’ is used to end a statement.

• ‘.,’ is used to mark the end of a statement and at the

same time to separate it from other sequential

statements.

3. MECHANICAL VERIFICATION

Several approaches were explored toward the mechanical

verification of the correctness of this protocol. This effort

started by simulation of the known cases and grew into

model checking of all scenarios using various model-

checking tools.

3.1. SMV

The Cadence Symbolic Model Verifier (SMV) [1] provided

the desired capability. SMV allows the designers to

formally verify temporal logic properties of finite state

systems. Developers use SMV to verify the design for all

possible input sequences, instead of a chosen selection of

sequences as in simulation.

The initial model of the 4-node system required more

memory for the construction of the state space than the

available 2GB of memory. The initial state space for the

basic case and in the presence of a Byzantine faulty node is

given by (Good_Node * Monitors
3
 * Channel

3
 *

Faulty_Node)
3
, or approximately 4x10

46
 for K = 4, F = 1, G

= 3, D = 1, d = 0, ∆AA = 1, ρ = 0, ∆Precision = 1, and PT = PM =

P = 10. The intuitive solution to this problem was to

provide more memory. The amount of memory was

increased to 4GB, the maximum capacity of the PC. There

is a hardware limitation on the amount of memory that can

be added to a given system. Furthermore, although

additional memory eased the state space construction, it did

not eliminate the problem. As a result, many abstractions

were made and a number of reduction techniques were

devised to circumvent the state space explosion problem.

Some of the techniques used are explained here. The

optimized state space for the basic case and is given by

(Good_Node * Monitors
3
 * Faulty_Node)

3
, or

approximately 5x10
24

. Nevertheless, the protocol can now

be exhaustively model checked for a 4-node system. A brief

history of this effort is reported in [12].

4. MODELING SIMPLIFICATIONS AND

ABSTRACTIONS

The local measures within each node are used to keep track

of timing of the self-stabilization events. Although the

derived parameters are defined with respect to the real time,

ultimately, in implementations they have to be translated

into discrete values. Discretization of the derived

parameters is performed using the ceiling operation. In this

protocol, all local variables and watchdog timers are

discretized and represented by integer values. These local

variables are, therefore, measured with respect to the local

clock.

 6

The state space for modeling of the general case of this

protocol far exceeds the available 4GB memory. Thus, in a

bottom-up approach, a basic case is modeled such that the

number of parameters needed are minimal and the range of

each parameter is at its minimum. A distributed system

tolerating as many as F Byzantine faults requires a network

size of more than 3F nodes [3, 11] to maintain synchrony.

In other words, to guarantee the closure property a minimum

of 3F+1 nodes are needed. Therefore, the basic case is

defined as the minimum number of nodes that can self-

stabilize in the presence of at least one Byzantine faulty

node and with all other parameters at their minimum. Thus,

for the basic case, the number of nodes in the system K = 4,

the upper bound on the number of faulty nodes F = 1, and

the minimum number of good nodes, G, is determined to be

G = K - F = 3 nodes.

Other aspects of the basic case are topological issues. The

logical topology is a fully connected graph of a 4-node

system, where each node is directly connected to another

node via a dedicated bi-directional channel. As shown in

Figure 1, each node and the source of a message is distinctly

identifiable by other nodes. The physical topology can be

either a fully connected graph, similar to the logical

topology, or equivalently, a graph where a message from a

source is broadcast to all other nodes at the same time. For

the basic case, broadcast is modeled using a single variable.

Recall that all parameters are defined as integers. The event

response delay, D, and the network imprecision, d, are

chosen to be at their minimum values of 1 and 0 clock ticks,

respectively. As a result, ∆AA is at its minimum of one clock

tick. This simplification, consequently, implies that the

logical timers of the good nodes are in phase with each

other. Note that this simplification does not imply that the

nodes are synchronized with each other. To further

minimize the state space, the clock drift rate, ρ, is chosen to

be zero. This simplification guarantees that the nodes’

State_Timer will remain in phase with each other. Model

checking of the system with ∆AA > 1 where the logical timers

of the good nodes are in phase with respect to each other, is

equivalent to model checking for ∆AA = 1 and the basic case.

 However, model checking of the system with ∆AA > 1,

where the logical timers of the good nodes are out-of-phase

with respect to each other, poses a greater challenge.

We recognize that the choice of the value for network

imprecision, d = 0, is a nonrealistic assumption.

Nonetheless, these simplifications are necessary in order to

reduce the state space to a manageable size. Furthermore,

we believe that the basic case specifies the set of necessary

conditions that all candidate solutions to this problem should

satisfy. As an example, the flaw in [7] was discovered as a

direct result of applying that protocol to the basic case as

documented in [8]. We also acknowledge that satisfying the

basic case does not necessarily imply that the candidate

solution solves the general case of this problem.

In order to expedite the self-stabilization process, in general,

and in order to minimize the state space for model checking

purposes, in particular, the convergence time has to be

minimized. It was argued in [9, 10] that PT,min = 10 and PM

≥ PT. Although the maximum duration of the Restore state,

PT, can be any value larger than the required minimum, PT is

chosen to be PT,min. In order to minimize the state space, PM

is chosen to be equal to PT. Therefore, synchronization

period, P, for the basic case is chosen to be P = PM = PT =

10. For the basic case, the parameters d and ρ are chosen to

be zeros. In other words, there are no variations in the

communication delay and the nodes do not drift with respect

to each other. Model checking of the system with larger

values for PM and PT is equivalent to model checking for P =

PM = PT = 10.

A system clock, SCLK, is introduced to keep track of

passage of time from the global perspective. The SCLK is

managed at the system level and is incremented per SMV

cycle. Each node has a logical clock, Local_Timer, that

locally keeps track of time. This logical clock is used to

measure the convergence time, C, as well as the self-

stabilization precision, ∆Precision, across good nodes (i.e.

external view of the system). Since for the basic case the

logical timers (State_Timer and Local_Timer) of the good

nodes are in phase with each other and since ∆AA = 1 and

ρ = 0, a single SCLK suffices to drive timers of all nodes.

The use of a single SCLK also eliminates redundancies at the

node level for replicating behavior of local oscillators and,

thus, reduces the state space substantially. The SCLK,

therefore, binds the whole system together, providing a

means for advancing the State_Timer and Local_Timer at

the node and an external view of the system at any time.

Although the use of a single clock does not imply synchrony

at the nodes, it does imply that the nodes are in phase with

each other at the State_Timer and Local_Timer levels.

However, due to the inherent randomness of the operation of

the model checkers, the order of execution of the nodes is

not predetermined. Since there is no control over the order

of transmission of messages and the start of execution of the

nodes at each model checker cycle, the nodes potentially

broadcast and receive messages out of order of issuance.

5. MODELING THE SYSTEM

To accommodate for proper timing of operations of the

system, variables are needed to keep track of passage of

time in each monitor and node. Introduction of such

variables exponentially increases the state space beyond the

4GB available memory. For the general case of modeling

this protocol, a Transmit_Timer is needed at every node to

regulate proper timing of outgoing messages. A

Receive_Timer is needed at each monitor to keep track of

proper timing of incoming messages from its corresponding

source [9, 10]. As ∆AA increases linearly, the state space

associated with Transmit_Timer and Receive_Timer

increases exponentially.

 7

There are two different ways of modeling this protocol,

either all operations are done sequentially in one big

module, or the operations are partitioned between the node

and its monitors. In a sequential model, all activities take

place within the same scope and during one clock tick. Such

a model is not readily scalable. A modular model is readily

scalable, but requires coordinated interactions between the

node and its monitors. Either the monitors have to inform

the node of the changes in their current status or the node

has to poll the status of the monitors to stay current with the

changes in the system. In turn, the monitors have to be

informed by the node to take certain actions at the

appropriate time. Since the node and its monitors operate

with respect to a local clock, there will be a delay in a

monitor’s response to the node’s commands. The

interactions between the node and its monitors can be

coordinated either based on time or by passing a control

token in a master-target fashion.

In this SMV model, a modular approach is employed where

the interactions between a node and its monitors are

coordinated based on time. Also, to minimize the state

space both positive and negative edges of the SCLK are

used. In particular, the nodes operate at the positive edge of

the SCLK while the monitors operate at the negative edge of

the SCLK. For ∆AA = 1, operating at the positive edge of the

SCLK, the nodes are guaranteed not to violate the minimum

transmission time requirement for their consecutive output

messages. Therefore, for the basic case there is no need for

the Transmit_Timer variable and, consequently, no need for

the Receive_Timer variable. Thus, further reduction in

memory and computation requirements is achieved. Since

∆AA = D = 1 and ∆Drift = 0,

∆Precision = (3F - 1) ∆AA - D + ∆Drift = 2∆AA - D + 0 = ∆AA, and

∆Precision = ∆AA = 1.

Since ∆AA = 1 and PT = PM = P = 10,

C = (2PT + PM) ∆AA = 3P = 30∆AA = 30.

6. MODELS AND DATA STRUCTURES

In this section, the system components are modeled and

subsequently their data structures are defined. Detailed

descriptions of these constructs and the SMV code of the

basic case are reported in [12].

6.1. Modeling Faulty Nodes

The fault tolerant requirement of K ≥ 3F+1 implies that the

system of 4 nodes can tolerate up to one Byzantine faulty

node. Therefore, the system is devised to consist of 3 good

nodes and one faulty node. In Figure 4 the faulty node, N4,

is shown in gray.

N2

N3N4

N
1

Figure 4. A 4-node system with a faulty node.

To properly portray the behavior of the faulty node, Figure 4

needs to be redrawn. Figure 5 portrays a symmetric faulty

node and a crash-silent node that is a special case of a

symmetric faulty node where every good node, N1 through

N3, have the same view of the faulty node, N4.

N2

N3N4

N1

N2

N3

N1

 Symmetric faulty Crash-silent

Figure 5. A 4-node system with a symmetric faulty node.

Modeling of an asymmetric (Byzantine) faulty node is more

complex than the symmetric faulty node. The malicious

nature of the Byzantine faulty node is such that as if each

good node is affected independently by the Byzantine faulty

node. Such behavior of the Byzantine faulty node is

depicted in Figure 6 by replicating the effects of the

Byzantine faulty node, N4, for each good node N1 through

N3. Furthermore, the Byzantine faulty behavior modeled

here is a node with arbitrarily malicious behavior. Defined

earlier as permanent Byzantine faulty, the Byzantine faulty

node is allowed to influence other nodes at every clock tick

and at all time.

N2

N3N4,3

N1N4,1 N4,2

Figure 6. A 4-node system with an asymmetric (Byzantine)

faulty node.

Since the behavior of a faulty node is not the same as a good

node, modeling of a faulty node requires rethinking. Proper

modeling of faulty nodes can potentially result in

considerable state space reduction. It particular, a Byzantine

faulty node may transmit any one of the three possible

messages, namely, NONE, Resync, or Affirm at any time.

Additionally, unlike the good nodes, local state of a faulty

node does not play a role in the operation of this protocol.

Therefore, the faulty node is modeled as a special node only

capable of randomly producing any one of the three

messages at any clock tick and without any internal state.

 8

Consequently, the faulty node’s data structure has only one

parameter, Message_Out. The range of values that this

element can hold is enumerated as follows.

Message_Out = {NONE, Resync, Affirm}

6.2. Modeling Monitors

The assessment results of the monitored nodes are utilized

by the node in the self-stabilization process. The node

consists of a state machine and a set of (K -1) monitors. The

state machine describes the collective behavior of the node,

Ni, utilizing assessment results from its monitors, M1 .. Mi-1,

Mi+1 .. MK as shown in Figure 7, where Mj is the monitor for

the corresponding node Nj.

 Node i

State

Machine

From Nk

From Ni+1

From N1

To other nodes

M
i+1

Mk

From Ni-1
Mi-1

M1

Node i

Figure 7. Interaction of the node’s state machine and its

monitors.

A monitor keeps track of activities of its corresponding

source node. A monitor detects proper sequence and

timeliness of the received messages from its corresponding

source node. A monitor reads, evaluates, time stamps,

validates, and stores only the last message it received from

that node. A monitor also keeps track of the state of the

source node by keeping track of received Resync messages,

separately. The monitor’s data structure consists of

Last_Message, Receive_Timer, Message_Valid,

Delta_RR_Timer, and Received_Resync. The Last_Message

element represents the last valid message received from the

corresponding source node. The Receive_Timer element

represents the time interval between arrival of the last two

messages from the corresponding source node. As discussed

in the previous section, there is no need to model this

element for the basic case. The Message_Valid element

indicates whether or not the last message received was valid.

 The Delta_RR_Timer element represents the duration of

time between any two consecutive valid Resync messages

from the corresponding source. The Received_Resync

element indicates whether the last valid message received

was a Resync message. The range of values that these

elements can hold is enumerated as follows.

Last_Message = {Resync, Affirm}

Receive_Timer = {0 .. (∆AA+1)}

Message_Valid = {0, 1}

Delta_RR_Timer = {0 .. (PT + PM)}

Received_Resync = {0, 1}

In this modular SMV model, coordinated interactions

between the node’s state machine and the monitors require

sharing some of the node’s status with its monitors. In

particular, the variables Node_State, Node_State_Timer, and

Accept are used to reflect the changes in the State of the

node as it transitions through the state machine. In contrast,

the monitors’ Message_valid, Received_Resync, and

Last_Message are used by the node’s state machine in

evaluating the protocol functions and determining the proper

transitory conditions.

The functions InvalidAffirm() and InvalidResync() are

modeled as part of the Message_Valid by examining the

timing of received messages.

6.3. Modeling Good Nodes

The state machine describes the collective behavior of the

node, Ni, utilizing assessment results from its monitors, M1 ..

Mi-1, Mi+1 .. MK as shown in Figure 7. The good node’s data

structure consists of State, Accept_Events, State_Timer,

Local_Timer, Transmit_Timer, and Message_Out. The

State element represents the current state of the node. The

Accept_Events element is the count of accept events since

the node entered the Restore state. The State_Timer element

represents the duration of current state of the node. The

Local_Timer element represents the duration of time since

the node has been synchronized with other good nodes. The

Transmit_Timer element represents the passage of time

since the transmission of the last message by the node. As

discussed in the previous section, there is no need to model

this element for the basic case. The Message_Out element

represents the out going message of the node. The range of

values that these elements can hold is enumerated as

follows.

State = {Restore, Maintain}

Accept_Events = {0 .. (F+1)}

State_Timer = {0 .. PM}

Local_Timer = {0 .. (PT + PM)}

Transmit_Timer = {0 .. (∆AA+1)}

Message_Out = {NONE, Resync, Affirm}

6.4. Modeling Communication Channels

The communication channel’s data structure consists of

Message_In, Comm_Delay, and Message_Out. The

Message_In element represents the message deposited by

the transmitting node. The Comm_Delay represents the

amount of delay associated with the channel. The

Message_Out element represents the delayed message being

delivered to the destination nodes. The range of values that

these elements can hold is enumerated as follows.

 9

Message_In = {NONE, Resync, Affirm}

Comm_Delay = {1 .. ∆AA}

Message_Out = {NONE, Resync, Affirm}

Since for the basic case ∆AA is one clock tick, a deposited

message on a communication channel is available to the

destination nodes at the next clock tick. Therefore, a

channel of depth one suffices. Also since a message is

broadcast to other nodes, a single variable suffices to

represent the communication channel from a node to all

other nodes. Therefore, in order to reduce the state space,

the communication channel is modeled implicitly and as part

of the node’s out going message instead of introducing a

new SMV module for the channels.

7. PROPOSITIONS

Computational tree logic (CTL), a temporal logic, is used to

express properties of a system in this context. CTL uses

atomic propositions as its building blocks to make

statements about the states of a system. CTL then combines

these propositions into formulas using logical and temporal

operators with quantification over runs. The CTL operators

have the following format.

Q T

there exists an execution E X next

for all executions A F finally

(eventually)

G globally

U until

In this section the claims of convergence and closure

properties as well as the claims of maximum convergence

time and determinism of the protocol for the basic case are

examined. Although in the description of the protocol these

properties are stated separately, nevertheless, they are

examined via one CTL proposition. Validation of this

general CTL proposition requires examination of a number

of underlying propositions. In particular, since ∆Local_Timer(t)

is defined in terms of the Local_Timer of the good nodes

and the Local_Timer is defined in terms of the State_Timer,

examination of the properties that described proper behavior

of the State_Timer take precedence. As a result, in this

section, the four underlying propositions are examined

followed by the general proposition that validates the

convergence and closure properties of the protocol as well

as the claims of maximum convergence time and

determinism.

The following properties are described with respect to only

one good node, namely Good_Node_1. Since all good

nodes are identical, due to the symmetry, the result of the

propositions equally similarly applies to other good nodes.

Proposition 1: This property specifies whether or not the

State_Timer of a good node takes on a given value in its

range infinitely often, for instance, its maximum value of P.

The expected result for this proposition is a true value.

AF (Good_Node_1.State_Timer = P)

Examining the negation of this property is expected to

produce a false value. This proposition verifies that the

State_Timer of a good node cannot never reach a given

value.

EG !(Good_Node_1.State_Timer = P)

Similar properties apply to the Local_Timer, but within its

expected range.

Proposition 2: This property specifies whether or not the

State_Timer of a good node takes on all values in its range

infinitely often. In other words, it verifies that the model

does not deadlock. Furthermore, the value of the

State_Timer of a good node at the next clock tick is different

from its current value and is its expected next value in the

sequence of 0 to P. The expected result for this proposition

is a true value.

AG (((SCLK = 1) & (Good_Node_1.State_Timer = i)) ->

AX ((SCLK=0) & ((Good_Node_1.State_Timer = i) |

(Good_Node_1.State_Timer = i+1)))) &

AG (((SCLK = 1) &

(Good_Node_1.State_Timer = P)) ->

AX ((SCLK = 0) &

(Good_Node_1.State_Timer = 0)))

For all i = 0 .. (P-1)

Examining the negation of this property is expected to

produce a false value. This proposition verifies that the next

value of the State_Timer of a good node cannot be the same

as its current value. In other words, its value always

advances within the expected range.

EG (((SCLK = 1) & (Good_Node_1.State_Timer = i)) ->

EX ((SCLK = 0) & (Good_Node_1.State_Timer = i))) |

For all i = 0 .. (P-1)

Similar properties apply to the Local_Timer, but within its

expected range.

 10

Proposition 3: This property specifies whether or not time

advances and the amount of time elapsed, Elapsed_Time,

has advanced beyond the predicted convergence time,

Convergence_Time. The expected result for this proposition

is a true value.

Elapsed_Time:= (Global_Clock >= Convergence_Time) ;

AF (Elapsed_Time)

The Global_Clock is a measure of elapsed time from the

beginning of the operation and with respect to the real time,

i.e. external view. The Elapsed_Time is indicative of the

Global_Clock reaching its target maximum value of

Convergence_Time.

init (Global_Clock) := 0 ;

next (Global_Clock) :=

case

(SCLK = 1) & (Global_Clock < Convergence_Time) :

Global_Clock + 1 ;

1 : Global_Clock ; -- no-op

esac ;

Elapsed_Time := (Global_Clock >= Convergence_Time) ;

Proposition 4: Similar to Proposition 2, this property

specifies whether or not the State_Timer of a good node

takes on all values in its range infinitely often but beyond

the convergence time, i.e. after Elapsed_Time has become

true. The expected result for this proposition is a true value.

Examining the negation of this property is expected to

produce a false value. Similar properties apply to the

Local_Timer, but within its expected range.

AF (Elapsed_Time) &

AG (((SCLK = 1) & (Elapsed_Time) &

(Good_Node_1.State_Timer = i)) ->

AX ((SCLK=0) & ((Good_Node_1.State_Timer= i) |

(Good_Node_1.State_Timer = i+1)))) &

AG (((SCLK = 1) & (Elapsed_Time) &

(Good_Node_1.State_Timer = j)) ->

AX ((SCLK = 0) &

(Good_Node_1.State_Timer = j+1))) &

AG (((SCLK = 1) & (Elapsed_Time) &

(Good_Node_1.State_Timer = P)) ->

AX ((SCLK = 0) & (Good_Node_1.State_Timer = 0)))

For all i = 0 .. 4

For all j = 5 .. (P-1)

Proposition 5: The convergence and closure properties are

described in Section 2.5. This proposition encompasses the

criteria for the convergence and the closure properties as

well as the claims of maximum convergence time and

determinism. This proposition specifies whether or not the

system will converge to the predicted precision after the

elapse of convergence time, Elapsed_Time, and whether or

not it will remain within that precision thereafter. The

expected result for this property is a true value.

AF (Elapsed_Time) &

AG (Elapsed_Time -> All_Within_Precision) &

AG ((Elapsed_Time & All_Within_Precision) ->

AX (Elapsed_Time & All_Within_Precision))

The proper value of the All_Within_Precision is determined

by measuring the difference of maximum and minimum

values of the Local_Timers of all good nodes for the current

SCLK tick and in conjunction with the result from the

previous SCLK tick. The expected difference of

Local_Timers is the predicted precision bound.

The negation of the above proposition is listed below and

the expected result is a false value. This property specifies

that after the elapse of convergence time, Elapsed_Time,

whether or not the system will not converge or if it

converges, whether or not it drifts apart beyond the expected

precision bound.

AF (Elapsed_Time) &

AG (Elapsed_Time -> All_Within_Precision) &

AG ((Elapsed_Time & All_Within_Precision) ->

EX (! All_Within_Precision))

8. RESULTS

This SMV model checking effort was performed on a PC

with 4GB of memory running Linux. SMV was able to

examine all possible scenarios and the basic case of the

protocol was model checked. The model checking results

are listed in the following tables. The negation of a property

is denoted by using the unary operator ‘!’.

The Byzantine faulty behavior modeled here is a node with

arbitrarily malicious behavior. The Byzantine faulty node is

allowed to influence other nodes at every clock tick and at

all time as depicted in Figure 6. Regardless of the nature of

the faulty node, no assumptions are made about the initial

internal status of the nodes, the monitors, and the system.

For instance, a node can wake up in the Maintain state and

transmit a Resync, message. Although such behavior from a

good node is not exhibited during normal operation,

nevertheless, it is allowed for the random start up. Such a

 11

model is for the weakest assumptions about the behavior of

the faulty nodes, the internal state of data structures of the

nodes, the monitors, and the system as a whole, and thus

produces the strongest results.

Table 1. Results in the presence of a Byzantine faulty node.

Proposition Result Time(sec) Mem(GB)

1 T 1311 1.2

1! F 1318 1.2

2 T 0.2 0.012

2! F 8866 1.2

3 T 0.04 -

4 T 19 0.056

4! F 4702 1.2

5 T 2313 2

5! F 3413 2.1

Table 1 lists the results of model checking of the basic case

for the stated propositions 1 through 5, where the duration of

the Maintain and Restore states, PM and PT, are chosen to

be PM = PT = Period = 10 and the maximum convergence

time, Convergence_Time, is 30. As shown in Table 1, the

maximum memory usage is about 2GB after applying the

state space reduction techniques. The amount of memory

used and processing time needed depend on the BDD

construction and the nature of the query. Although

verification of the stated propositions suffices to validate the

claims of correctness and determinism of the protocol and in

the presence of a Byzantine fault, the propositions are

further examined for other, and hence less severe, types of

faults. For the following scenarios, the values for the Period

and Convergence_Time are the same as for Table 1.

8.1. Symmetric Fault

In this case, all good nodes receive identical messages from

a single faulty node as depicted in Figure 5. The faulty node

still behaves randomly, but its effect at the receiving nodes

is identical. As shown in Table 2, the maximum available

memory is used to model check this case. Due to the BDD

construction, the memory usage is far more than the

Byzantine faulty case.

Table 2. Results in the presence of a symmetric faulty node.

Proposition Result Time(sec) Mem(GB)

1 T 2573 2.0

2 T 0.2 0.012

3 T 0.04 -

4 T 62 0.160

5 T 3975 3.5
*

*
 Of 4GB available memory, maximum memory utilized by

SMV is approximately 3.5GB.

8.2. Crash-Silent Fault, a.k.a. Stuck-at NONE Message

This case is a special case of the symmetric faulty node

where the faulty node is not transmitting any messages. This

case is modeled such that the associated message from the

faulty node to all good nodes is a NONE message signifying

lack of transmission by the faulty node. This case is

depicted in Figure 5.

Table 3. Results in the presence of a symmetric faulty node.

Proposition Result Time(sec) Mem(GB)

1 T 28 0.045

2 T 0.15 -

3 T 0.04 -

4 T 6 0.015

5 T 365 0.34

8.3. Stuck-at Resync Message

This case is another special case of the symmetric faulty

node where all good nodes receive identical messages from

a single faulty node. The faulty node transmits the same

message to all good nodes all the same time.

Table 4. Results in the presence of a symmetric faulty node.

Proposition Result Time(sec) Mem(GB)

1 T 81 0.25

2 T 0.15 -

3 T 0.04 -

4 T 7 0.025

5 T 605 0.61

8.4. Stuck-at Affirm Message

This case is another special case of the symmetric faulty

node where all good nodes receive identical messages from

a single faulty node. The faulty node transmits the same

message to all good nodes all the same time.

Table 5. Results in the presence of a symmetric faulty node.

Proposition Result Time(sec) Mem(GB)

1 T 19 0.033

2 T 0.15 -

3 T 0.04 -

4 T 5 0.017

5 T 276 0.3

 12

9. APPLICATIONS

The proposed self-stabilizing protocol is expected to have

many practical applications as well as many theoretical

implications. Embedded systems, distributed process

control, synchronization, inherent fault tolerance which also

includes Byzantine agreement, computer networks, the

Internet, Internet applications, security, safety, automotive,

aircraft, wired and wireless telecommunications, graph

theoretic problems, leader election, time division multiple

access (TDMA), and the SPIDER
3
 project [13, 14] at

NASA-LaRC are a few examples. These are some of the

many areas of distributed systems that can use self-

stabilization in order to design more robust distributed

systems.

10. SUMMARY AND FUTURE WORK

In this report a SMV model of a simplified model of a rapid

Byzantine-fault-tolerant self-stabilizing protocol for

distributed clock synchronization systems is presented. The

simplified model of the protocol is model checked using

SMV where the entire state space is examined and proven to

self-stabilize in the presence of one permanent Byzantine

faulty node. Furthermore, the simplified model of the

protocol is proven to deterministically converge with a

linear convergence time with respect to the self-stabilization

period as predicted. This protocol does not rely on any

assumptions about the initial state of the system except for

the presence of sufficient good nodes and no assumptions

are made about the internal status of the nodes, the monitors,

and the communication channels, thus making the weakest

assumptions and producing the strongest results. The

Byzantine faulty behavior modeled here is a node with

arbitrarily malicious behavior. The Byzantine faulty node is

allowed to influence other nodes at every clock tick and at

all time. The only constraint is that the interactions are

restricted to defined interfaces.

In this report, modeling challenges are addressed and

abstraction techniques are illustrated. The basic case is

introduced that specifies the set of necessary conditions that

all candidate solutions to this problem should satisfy. The

flaw in [7] was discovered as a direct result of applying that

protocol to the basic case [8]. Although model checking

results of the basic case of the protocol are promising, these

results are not sufficient to confirm that the protocol solves

the general case of this problem.

Having mechanically verified a simplified model of the

protocol, new hypothesis and conjectures are now practical

for examination. The current modeling approach is a very

powerful tool for asking “What if?" questions that are

difficult to answer either by manual analysis or by testing

12
3
 Scalable Processor-Independent Design for Enhanced Reliability

(SPIDER).

real hardware.

In our ongoing efforts toward the verification of this

protocol for the general case, the SMV model of the

simplified version of this protocol has been redesigned and

restructured. Also, the protocol has been redesigned and

further simplified. As a result, the current model requires

less memory, making exploration of more complex and

larger configurations easier. Consequently, instances of the

protocol representing the out-of-phase scenario where D > 1

and d = 0, and hence, ∆AA > 1, have been explored. Thus

far, the analyses indicate that the protocol solves the out-of-

phase scenario. Instances of the protocol representing a

more complex system where D ≥ 1 and 0 ≤ d ≤ 1 have also

been examined. Thus far, the analyses indicate that the

protocol is applicable to realizable systems and practical

applications. In addition, some instances of the protocol

representing larger systems, where F > 1, have also been

studied. Thus far, the analyses indicate that the protocol

does not solve the general case of this problem where F >

1. A detailed explanation of the analyses is beyond the

scope of this report. Nevertheless, so far this model

checking effort proved that, at a minimum, a deterministic

solution for specific cases of this problem exists. We expect

that this protocol serves as the starting point toward finding

a comprehensive solution for the general case. In-depth

analyses of the simplified version of this protocol for more

complex and larger systems will be the subject of a

subsequent report. This analysis will include pitfalls,

relevant counterexamples, an argument toward impossibility

results, as well as scenarios where this protocol can be used

as a basis for larger systems and, thus, for realizable systems

and practical applications.

 13

REFERENCES

[1] http://www-2.cs.cmu.edu/~modelcheck/smv.html

[2] E. W. Dijkstra, “Self stabilizing systems in spite of

distributed control,” Commun. ACM 17,643-644, 1974.

[3] L. Lamport, R. Shostak, M. Pease, “The Byzantine

General Problem,” ACM Transactions on Programming

Languages and Systems, 4(3), pp. 382-401, July 1982.

[4] T. K. Srikanth, and S. Toueg, “Optimal clock

synchronization,” Journal of the ACM, 34(3), pp. 626–

645, July 1987.

[5] J. L. Welch and N. Lynch, “A New Fault-Tolerant

Algorithm for Clock Synchronization,” Information and

Computation volume 77, number 1, pp.1-36, April 1988.

[6] Sholmi Dolev and Jennifer L. Welch, “Self-Stabilizing

Clock Synchronization in the Presence of Byzantine

Faults,” Journal of the ACM, Vol.51, No. 5, pp. 780-799,

September 2004.

[7] A. Daliot, D. Dolev, and H. Parnas, “Linear Time

Byzantine Self-Stabilizing Clock Synchronization,”

Proceedings of 7th International Conference on Principles

of Distributed Systems (OPODIS-2003), La Martinique,

France, December 2003.

[8] Mahyar R. Malekpour and R.Siminiceanu, “Comments on

the “Byzantine Self-Stabilizing Pulse Synchronization”

Protocol: Counterexamples,” NASA/TM-2006-213951,

pp. 12, February 2006.

[9] Mahyar R. Malekpour, “A Byzantine-Fault Tolerant Self-

Stabilizing Protocol for Distributed Clock Synchronization

Systems,” NASA/TM-2006-214322, pp. 37, August 2006.

[10] Mahyar R. Malekpour, “A Byzantine-Fault Tolerant

Self-Stabilizing Protocol for Distributed Clock

Synchronization Systems,” Eighth International

Symposium on Stabilization, Safety, and Security of

Distributed Systems (SSS06), November 2006.

[11] L. Lamport and P.M. Melliar-Smith, “Synchronizing

clocks in the presence of faults,” J. ACM, vol. 32, no. 1,

pp. 52-78, 1985.

[12] Mahyar R. Malekpour, “Model Checking a Byzantine-

Fault-Tolerant Self-Stabilizing Protocol for Distributed

Clock Synchronization Systems,” NASA/TM-2007-

215083, pp. 36, November 2007.

[13] Wilfredo Torres-Pomales, Mahyar R. Malekpour, Paul

S. Miner, “ROBUS-2: A fault-tolerant broadcast

communication system”. NASA/TM-2005-213540, pp.

201, March 2005.

[14] Wilfredo Torres-Pomales, Mahyar R. Malekpour, Paul

S. Miner, “Design of the Protocol Processor for the

ROBUS-2 Communication System”. NASA/TM-2005-

213934, pp. 252, November 2005.

BIOGRAPHY

 Mahyar R. Malekpour is a

research engineer at NASA

Langley Research Center, in

Hampton, VA. His research

interests include fault-tolerance,

distributed clock synchronization,

algorithm development, and model

checking. He holds B.S. in

computer engineering and an M.S. in electrical engineering

from Old Dominion University.

